
About the Kerberos Network Authentication Service V5 B-1

Appendix B. About the Kerberos Network Authentication
Service V5

In this appendix we provide an introduction to the Kerberos Network
Authentication Service V5, discuss the important terms and components, and
describe the authentication process.

B.1 Introduction to Kerberos V5

B.1.1 Background
Kerberos V5 is a network authentication protocol designed to serve as a trusted
third-party authentication service. It is a single-sign-on system, meaning that a
user only has to type his password once, and the Kerberos V5 programs do the
authenticating (and, optionally, encrypting) for the user as connections to other
machines are made.

Kerberos was developed at MIT in 1987 and has matured into a stable product
with widespread operating system and application support. Microsoft has
based the authentication in Windows 2000 on Kerberos V5. Kerberos
continues to see active development, with new releases occurring
approximately twice per year. Kerberos V4 has been in use at Fermilab as part
of AFS, and both Kerberos V4 and V5 are widely used at other laboratories
and universities.

A machine on which Kerberos has been installed and which enforces the
Kerberos authentication is referred to as a strengthened or Kerberized machine.
Kerberos has been built into each of a suite of network programs, including
telnet, FTP, rsh, rcp, rlogin and ssh. It can be built into other programs as
well. The Kerberized version of a program is also referred to as strengthened
or Kerberized, and requires individual authentication for use.

B.1.2 About Kerberos Authentication
Kerberos verifies the identity of a user or a network service (users and services
are collectively called principals) on an unprotected network using
conventional cryptography in the form of a shared secret key. The shared
secret key technology allows a client and server (e.g., a principal and a
strengthened machine) to mutually establish their identity across an insecure
network connection without exposing passwords. They can also assure
integrity and/or privacy of their communications with cryptographic methods.

B-2 About the Kerberos Network Authentication Service V5

B.1.3 How Secure is Kerberos?

Password Centralization

In Kerberos V5, the password-checking (authentication) happens in a central
place for all the machines in the strengthened realm, not on the end systems.
End systems need not store any information which can be used to try to guess a
password, and they are not involved in password maintenance or quality
control. Let’s compare this to standard UNIX and (nonKerberized) ssh:

• For standard UNIX passwords, each end system has to store information
sufficient to check the password, which is therefore also sufficient to try
to guess the password. Another problem is that password changes must
be repeated on each system or NIS cluster of systems, and quality, aging
and reuse prevention are hard to ensure.

• The problems with UNIX passwords are also present with ssh, and ssh
presents a couple of additional problems:

· RSA keys1 can give access to various accounts, and there’s no way to
know with certainty who possesses which keys. In the event of a
compromise of a private key, there’s no mechanism for locating every
host on which the corresponding public key appears. The private keys
are protected by passphrases which (a) are often no better than a very
short password, (b) are sometimes typed in the clear, and (c) are
sometimes completely lacking.

· It is difficult to determine where a password/account resides.
Consequently it is much more difficult to control access in a thorough
way.

• The problems with UNIX passwords are also present with ssh. There is
in addition the issue of RSA keys2. RSA keys can give access to various
accounts, and there’s no way to know with certainty who possesses which
keys. In the event of a compromise of a private key, there’s no
mechanism for locating every host on which the corresponding public
key appears. The private keys are protected by passphrases which (a) are
often no better than a very short password, (b) are sometimes typed in the
clear, and (c) are sometimes completely lacking.

1. RSA is an authentication method supported by ssh; it is based on public-key cryptogra-
phy in which encryption and decryption are done using separate keys, and it is not possible
to derive the decryption key from the encryption key. The idea is that each user creates a
public/private key pair for authentication purposes. The server knows the public key, and
only the user knows the private key.
2. RSA is an authentication method supported by ssh; it is based on public-key cryptogra-
phy in which encryption and decryption are done using separate keys, and it is not possible
to derive the decryption key from the encryption key. The idea is that each user creates a
public/private key pair for authentication purposes. The server knows the public key, and
only the user knows the private key.

About the Kerberos Network Authentication Service V5 B-3

Password Compromise

As noted in section A.2 Goals of Strong Authentication at Fermilab, it is
impossible to entirely prevent the transmission of clear text passwords, but
Kerberos V5 removes the most common opportunities as well as most of the
necessity for typing a password. Our implementation of Kerberos allows an
unencrypted mode of access in order to accommodate users who have no
specialized software of any sort available. This was a requirement we had to
meet. The down side is, it means that all users must pay attention to whether
their connection is encrypted or not whenever they need to type their Kerberos
password.

It is possible to issue your Kerberos password over an unencrypted connection,
but this is a violation of common sense and FNAL policy! Please see
Appendix : Encrypted vs. Unencrypted Connections for instructions on how to
avoid doing this.

In the event a Kerberos password is stolen by eavesdropping, it’s not
impossible for the thief to use it, but there is one serious obstacle: Because a
system configured according to our rules will not accept any password, correct
or incorrect, for a network login (described in section B.4 The Authentication
Process), the thief must first get onto a system in order to use the stolen
password. If the thief installs Kerberos software on his or her own system in
order to use the password, we have a record of exactly when and where the
password was used.

Furthermore, once into a Fermilab system as a normal user, gaining root access
is not necessarily any harder than on other systems, but doing so does not let
the perpetrator harvest a password file to crack more passwords, nor exploit
any “.rhosts” trusts that may exist. Some valid Kerberos credentials of other
users could get stolen, but those are strictly time-limited in value and do not
contain information which can be used to guess another password.

B.2 Keys, Tickets and the KDC

Kerberos authentication is implemented primarily via a service called the key
distribution center (KDC).1 The KDC shares a permanent secret key with each
principal (user and service).2 Most KDC implementations store the principals
in a database; therefore the term “Kerberos database” is sometimes applied to
the KDC. The KDC implements the Authentication Service (AS) and the

1. A Kerberos strengthened realm has one primary KDC, and may have one or more sec-
ondary KDCs. We refer to them here collectively as “the KDC”. Authentication is still
possible if the primary KDC is not reachable, but certain administrative tasks are not (e.g.,
changing passwords, creating new principals).
2. For a user, this shared secret key is a hash of the user’s password; for a service, the key
is a random bit string.

B-4 About the Kerberos Network Authentication Service V5

Ticket-Granting Service (TGS) for all the machines in the realm. To
understand what these do, you first need to know what session keys, tickets
and credentials are:

Session Key

A session key is a temporary secret encryption key, generated at
random by the KDC to be shared between two principals (usually a
user and a service). Its validity is limited to the lifetime of an
accompanying ticket. The session key is used to authenticate the
two principals to each other, possibly multiple times during the
ticket lifetime. Its purpose is to limit the use of the permanent key
(which for a user is derived from the password) over the network.
If encryption or integrity protection of bulk data is required, yet
another key is negotiated by the two principals, called a subkey or a
sub-session key.

Ticket Kerberos uses encrypted records called tickets to authenticate to
Kerberized services1. Tickets generally contain the session key, the
user and service ids and the client’s IP address. Some of the
information is encrypted with the service’s permanent key, known
only to the service and the KDC. A ticket is accompanied by an
extra copy of the session key encrypted under the user’s key. The
ability of both user and service to correctly decrypt the relevant
parts of the ticket establishes knowledge of the correct keys and
therefore establishes authentication for the service.

Credential The combination of the ticket and the session key is called a
credential.

The Authentication Service (AS) issues secret session keys and credentials
based on a user password or encryption key. It can issue both Ticket-Granting
Tickets (TGTs) and individual service tickets. A TGT is a ticket that
authenticates a user process to the Ticket-Granting Service (TGS) portion of
the KDC. The Ticket-Granting Service (transparently) issues tickets to clients
for individual Kerberized services.

B.3 Fermi vs. Standard MIT Kerberos

The Computing Division at Fermilab has taken the MIT Kerberos V5 product
and modified it to provide additional features. (Some of these in turn have
been incorporated into MIT’s releases.) The “Fermi Kerberos” is packaged as

1. Technically, both a ticket and a record called an authenticator are required. An authen-
ticator is generated and sent by the user process any time a ticket gets used. It contains,
among other things, a timestamp and optionally a sequence number, all encrypted with the
session key in the ticket. This proves to the service that the client knows the session key,
and hence is the legitimate holder of the ticket, and that this is not an adversary’s replay of
a previously used ticket/authenticator.

About the Kerberos Network Authentication Service V5 B-5

the UPS/UPD product kerberos for Fermilab-supported UNIX systems and,
recently, also in RPM format for FRHL. It is available in the central product
repository, KITS1. The most important features that have been added include:

1) CRYPTOCard logins through telnet and FTP.

2) The tools to do authentication of users’ cron jobs.

3) Flexible fallback to a non-Kerberized client if you default to encryption
“on” but connect to a non-Kerberos server.

4) An FTP client that plays nicely with emacs’ efs mode.

Users whose operating systems are not supported at Fermilab, or who don’t use
UPS/UPD for other reasons, have been installing Kerberos V5 from
non-Fermilab sources.

B.4 The Authentication Process

When a user logs in to a strengthened machine, or runs kinit (described in
section 9.2.1 Obtaining Tickets (Authenticating to Kerberos)), the Kerberos
program transmits some short “behind-the-scenes” messages. First it sends a
message, encrypted with (but not containing) your password, to the KDC. This
message also contains a timestamp, to confirm that you gave the right
password very recently. The KDC attempts to decrypt the message with its
copy of your password. If it can do so, and if the timestamp is recent, the KDC
believes you know the password, and that you are who you say you are. This
portion of the exchange is called preauthentication (error messages generated
in this portion of the exchange use this word).

Now that the KDC believes you are who you say you are, it makes a Ticket
Granting Ticket (TGT), which is sent back to you (also encrypted), and which
contains an encryption key for future ticket requests. This gets written in your
credential cache, and is the first entry listed when you run klist (described
in section 9.2.2 Viewing Tickets).

When you connect over the network from one Kerberized host to another, your
client application obtains a service ticket for the destination (or re-uses a valid
one from a credential cache) and presents it, together with an authenticator (see
third footnote in section B.2) it constructs fresh for each access, to the target
host. The application can optionally forward a TGT to the target host, enabling
access from that host to others.

1. There are a few related products that get installed automatically by UPD when kerberos
is installed.

B-6 About the Kerberos Network Authentication Service V5

Kerberized hosts at Fermilab running AFS are configured to obtain AFS
tokens automatically at login via the aklog program, provided that a Kerberos
ticket has been forwarded to the system. If not, the kinit command obtains
both a Kerberos ticket and an AFS token. The aklog program authenticates to
a cell or directory in AFS.

